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A Transgenic Alzheimer Rat with Plaques, Tau Pathology,
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Alzheimer’s disease (AD) is hallmarked by amyloid plaques, neurofibrillary tangles, and widespread cortical neuronal loss (Selkoe, 2001). The
“amyloid cascade hypothesis” posits that cerebral amyloid sets neurotoxic events into motion that precipitate Alzheimer dementia (Hardy and
Allsop, 1991). Yet, faithful recapitulation of all AD features in widely used transgenic (Tg) mice engineered to overproduce A3 peptides has been
elusive. We have developed a Tg rat model (line TgF344-AD) expressing mutant human amyloid precursor protein (APP,,,) and presenilin 1
(PSIAEY) genes, each independent causes of early-onset familial AD. TgF344-AD rats manifest age-dependent cerebral amyloidosis that pre-
cedes tauopathy, gliosis, apoptotic loss of neurons in the cerebral cortex and hippocampus, and cognitive disturbance. These results demon-
strate progressive neurodegeneration of the Alzheimer type in these animals. The TgF344-AD rat fills a critical need for a next-generation animal

model to enable basic and translational AD research.

Introduction

Alzheimer’s disease (AD) is the most common form of dementia
in elderly populations and is hallmarked by progressive: (1) de-
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position of amyloid- 3 peptides (AB; cleaved from amyloid pre-
cursor protein, APP) as B-amyloid plaques, (2) formation of
neurofibrillary tangles (NFTs; chiefly comprised of the hyper-
phosphorylated microtubule-associated protein tau), (3) chronic
neuroinflammation, and (4) neuronal injury and loss (Selkoe,
2001). As initially proposed, the “amyloid cascade hypothesis”
purports that A deposition as “senile” amyloid plaques is the
principal etiopathological event in AD (Hardy and Allsop, 1991).
The hypothesis further posits that AB aggregation sets down-
stream pathophysiologic processes into motion that culminate in
neuronal injury and loss and precipitate dementia of the Alzhei-
mer type (Rozemuller et al., 1989; Hardy and Allsop, 1991). The
strongest support for the hypothesis comes from human genetic
evidence: all mutations in APP or presenilins 1 or 2 (PS1/PS2)
that drive A accumulation invariably cause early-onset AD
(Selkoe, 2001).

Yet, one of the key critiques of the hypothesis is that the “gold
standard” animal models of the disease, AB-overproducing Tg
AD mice (Games et al., 1995; Hsiao et al., 1996; Sturchler-Pierrat
etal., 1997; Holcomb etal., 1998; Mucke et al., 2000; Jankowsky et
al., 2001), do not demonstrate robust tauopathy and neuronal
loss unless additional human transgenes are included that are not
linked to familial AD (Oddo et al., 2003; Padmanabhan et al.,
2006; Colton et al., 2008; Wilcock et al., 2008). Thus, the core
tenant of the amyloid cascade hypothesis—that cerebral A is
both necessary and sufficient for development of AD—remains
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controversial. Because rats are 4—5 million years closer to hu-
mans than mice in evolution (Yang et al., 2004), we hypothesized
that they may provide a better animal model for AD. Here, we
report the generation and characterization of transgenic rats
bearing mutant human APP and PSI (line TgF344-AD) that
manifest the full spectrum of age-dependent AD pathologies in
conjunction with cognitive disturbance.

Materials and Methods

Animals. TgF344-AD rats were generated on a Fischer 344 background by
co-injecting rat pronuclei with two human genes driven by the mouse
prion promoter: “Swedish” mutant human APP (APP,,) and A exon 9
mutant human presenilin-1 (PSIAE9). Both constructs used have previ-
ously been reported (Jankowsky et al., 2001). Transgene integration was
confirmed by genotyping and expression levels were evaluated by West-
ern blot (WB) of brain homogenates. Line 19 was selected for colony
expansion, aging, and detailed analyses based on highest overall trans-
gene expression levels. TgF344-AD rats and wild-type (WT) littermates
were housed and maintained at the Cedars-Sinai Medical Center Depart-
ment of Comparative Medicine vivarium, and all experiments were con-
ducted in compliance with protocols approved by the Institutional
Animal Care and Use Committee. We did not observe gender differences
on any of the measures reported, and therefore males and females were
combined for all analyses. TgF344-AD rats are available upon request via
material transfer agreement.

Neurological screen. Rats were initially behaviorally evaluated by neu-
rological screen, which consisted of a battery of neurological reflex tests:
righting response after being placed on the dorsal side; eye blink (re-
sponse to light touch with a small camel hair brush), ear twitch, and limb
withdrawal in response to tactile stimuli (light touch with a gloved fin-
ger); orienting response to olfactory (exposure to orange extract) and
visual stimuli (flashlight); and startle response following an auditory
stimulus (a metal clicker). Responses were scored as being present or
absent. Visual and tactile responses were also assessed. For visual and
tactile placing, the rat was loosely held in a gloved hand. For visual plac-
ing, the animal was allowed to view the surface of a table while the head
and forelimbs were slowly brought down to the surface. For tactile plac-
ing, the rat was prevented from viewing the surface of a table by holding
its chin up, and the forelimbs were slowly brought down to the surface.
Placing was assessed by counting the number of correct placements of the
limbs across 10 trials. Approximately 5 min/rat was required to complete
the neurological screen. All behavioral tests were of a cross-sectional
design and were conducted by a blinded examiner. Furthermore, code
was not broken until all analyses were completed.

Open field test. Locomotor activity was evaluated using a standard
open field test. The open field apparatus (San Diego Instruments) con-
sisted of an open topped, clear Plexiglas box measuring 40.6 X 40.6 X 38
cm. A ring of photo beams and optical sensors surrounded the box. The
optical sensors were connected to a computer by way of an input matrix,
and breaks in the photo beams were automatically recorded and used as
a measure of locomotor activity. The observation cages were cleaned
before the first run of the day, between subjects, and after the last run of
the day using tap water followed by ethanol. On the day of testing, rats in
their home cages were brought into the experimental room. The level of
illumination in the room during experimental testing was set at 325 lux.
Rats remained in the experimental room for 30 min, after which each rat
was placed into the center of the observation cage, and counting began
immediately. Beam breaks (locomotion) were recorded in 5 min bins for
60 min. The apparatus was programmed to record both central (defined
asa 30.5 X 30.5 cm region in the center of the box) as well as total beam
breaks. Data were plotted as beam breaks during each 5 min interval. For
statistical analysis, the scores of beam breaks across the 60 min session
were summed for each subject.

Object recognition test. An object recognition test was performed to
assess learning and memory. During the sampling phase, rats were re-
moved from their home cages and placed in the object recognition box,
which contained two identical objects (Al and A2) fixed to the floor.
After 3 min, the rat was removed from the object recognition box and
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returned to its home cage. Objects Al and A2 were also then removed
from the box. Twenty minutes were allowed to elapse before the start of
the 3 min choice phase. During the choice phase, rats were singly re-
moved from their home cages and returned to the object recognition box,
where two new objects (A3 and B) were fixed to the floor. Object A3 was
identical to objects Al and A2, whereas object B differed from objects A1,
A2, and A3. A videotape recording was made of the sample and choice
phases, and two raters independently rated the time each rat explored
each of the objects during the sample and choice phases. The percentage
time spent exploring the new object (C) during the choice phase cor-
rected for any location preference during the sample phase was taken as a
measure of memory. Exploration of an object was defined as when the rat
directed its nose toward the object at a distance of <2 cm.

Barnes maze. The Barnes maze is a widely accepted test of
hippocampus-dependent spatial reference learning and memory in rats.
The maze (San Diego Instruments) consisted of a circular platform (122
cm in diameter) with 20 holes evenly spaced around the perimeter, and
an aversive stimulus (bright light) located overhead. A dark, recessed
chamber (escape box) was located under one of the perimeter holes of the
platform. “False” escape boxes, too small for the rat to enter but other-
wise identical to the escape box, were oriented under the other holes. To
create different learning paradigms, the escape box can be moved to a
different location or the maze can be rotated. Photobeams and optical
sensors surrounded each hole, and the optical sensors were connected to
a computer by way of an input matrix, and breaks in the photo beams
were automatically recorded. To begin the experiment, the rat was placed
into a start tube (30.5 cm high and 20.3 cm in diameter) in the center of
the maze. After a 30 s acclimation period, a bright spotlight was illumi-
nated and the start tube was lifted off of the rat. The session ended when
the rat entered the escape box, or after 3 min elapsed. Once the rat
entered the escape box, the spotlight was turned off and the rat was
allowed to remain in the box for 2 min. Training was repeated four times
daily. The maze was rotated to change the position of the escape box by at
least 90° each day, and the position of the small hole alignment remained
consistent (i.e., one hole was always centered on the north edge). Rota-
tion of the escape box forces the rat to use external spatial cues from the
room rather than olfactory or local cues. During testing, the number of
errors, the location of the first hole searched, and the latency to enter the
goal box used to solve the maze were recorded. Errors were defined as
searches of any hole that did not have the goal box beneath it. Searches
included nose pokes and head deflections into a hole. However, succes-
sive pokes into the same hole were not counted as repeated errors. After
4 d of testing, 72 h were allowed to relapse before the animals are tested
again for retention. After a single retention trial, the location of the box
was shifted, and animals were retrained as above on the next day and the
following day.

Reagents. Antibodies against PS1 (clone NT1) and AB/APP (clones
6E10, 4G8, 12F4, 11A50, and 22C11), were obtained from Covance and
were used at dilutions of 1:200 for immunohistochemistry (IHC) and
1:500 for Western blot (WB). Antibodies against abnormally phosphor-
ylated tau (clones CP13 and PHF1, 1:50 for IHC, and 1:100 for WB) were
generously supplied by P. Davies (Albert Einstein College of Medicine of
Yeshiva University, Manhasset, NY); the oligomeric/conformational A3
antibody (clone OC, 1:2500 for IHC) was a gift from D. H. Cribbs and
C. G. Glabe (University of California, Irvine, CA), and clone A11 (1:500
for IHC) was obtained from Biosource. The pTau-PADRE pS396/404
antibody was made by immunizing rats with synthetic tau peptide (382-
418) conjugated with the prototypical T cell epitope, PADRE (Think
Peptides). An antibody against total tau (clone Tau-5, 1:500 for WB),
phalloidin (AlexaFluor 647 conjugated, 1:40 for IHC), and ProLong
Gold anti-fade mounting media with DAPI were obtained from Invitro-
gen. Antibody against Tujl (1:1000 for IHC and WB) was purchased
from Sigma, and actin antibody (1:1000 for WB) was obtained from
Millipore. An antibody against Ibal (1:200 for IHC) was obtained from
Wako Ltd. TUNEL stain was purchased from Roche and used in accordance
with the manufacturer’s instructions. Antibodies against total and cleaved
Caspase-3 were obtained from Cell Signaling Technology (1:200 for THGC;
1:1000 for WB).
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Tissue preparation. Following cardiac perfusion with sterile ice-cold
PBS, rat brains were rapidly isolated and bisected into hemispheres. One
hemisphere was fixed in 4% paraformaldehyde (PFA) before routine
processing and paraffin embedding for histochemical analyses. The re-
maining hemisphere was weighed, snap frozen, and homogenized in 2 ml
of ice-cold lysis buffer (Cell Signaling Technology) supplemented with 1
mM phenylmethylsulfonyl fluoride for biochemical analyses. Briefly,
brains were mechanically dissociated using an Ika disperser for 2 min and
were allowed to stand for 15 min at 4°C. Following homogenization of
snap-frozen hemispheres, samples were separated into two equal ali-
quots, which were then centrifuged at 10,000 X g for 15 min at 4°C and
stored at —80°C. One aliquot was subjected to biochemical analysis for
APP, A, and Caspase-3, while the remaining aliquot was used for tau
biochemical analysis. For EM, rats were perfused for 5 min at 120 mm Hg

through the transcardial access using 4% buff-
ered formalin freshly prepared from PFA

WT Tg C WT _Tg mixed with 0.1% glutaraldehyde. Freshly iso-
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retrieval buffer before serum-free protein block

0.25) ** (Dako Cytomation) application. Sections were
g:?g then hybridized with various primary antibodies
0.10 followed by incubation with the appropriate
g:gg horseradish peroxidase (HRP)- or fluorophore-

WT TgF344-AD conjugated secondary antibodies. For HRP-

Age-dependent behavioral impairment in TgF344-AD rats. A, Schematic of plasmids coinjected into Fischer rat
pronuclei to generate TgF344-AD rats, adapted from the study by Jankowsky et al. (2001). B, PR results from APPsw, PSTAE9, or
TcR& reactions. €, Western blots for brain APP, PSTAE9, PS1 N-terminal fragment (NTF), or actin are shown. D, Densitometric
= 12) relative to actin. Fold increases across genotype are
indicated. E-I, Six groups of littermate rats, including both WT and Tg animals aged 6 months (WT,n = 21;Tg,n = 21), 15 months
(WT,n = 28;Tg, n = 30), or 24 months (WT, n = 21; Tg,n = 20), were subjected to behavioral testing. E, F, Total movement (by
rearing or beam breaks) was evaluated in an open field in 5 min bins over 60 min. G, Preference for a novel versus a familiar object
is shown. H, I, Errors made during Barnes maze testing are shown. All data are represented as means + SEM.

conjugated secondary antibodies, sections were
developed with an HRP-labeled polymer-based
kit (Dako EnVision) coupled with the 3’-3" di-
aminobenzidine substrate followed by routine
dehydration in a graded series of ethanols and
xylene. For amyloid burden, sections were di-
rectly stained with Thioflavin S (ThioS) accord-
ing to standard practice. All sections were
coverslipped with the appropriate mounting me-
dia (Prolong Gold or Permount) before imaging.
Bright-field and structured illumination fluores-
cent images were obtained using a Zeiss Axiolm-
ager Z1 with attached ApoTome and CCD
camera (Carl Zeiss Microimaging). Confocal im-
ages were taken using an Eclipse C1 instrument
with four independent laser lines (Nikon Instru-
ments). Images were digitized into a PC running
Windows XP, and image analysis of micrographs
was conducted using Image]J software (NIH).

Owr
W TgF344-AD

Biochemical analyses. We carried out bio-
chemical analysis of AB peptides according to a
two-step extraction method (Johnson-Wood
etal., 1997; Tan et al., 2002). Briefly, detergent-
soluble AB,_,, 4, species were separately de-
tected in rat brain homogenates prepared with
lysis buffer described above at a 1:25 dilution.
Detergent-insoluble AB,_, 4, species were de-
tected by extraction of homogenate pellets in
the chaotropic agent, 5 M guanidine-HClI, fol-
lowed by a 1:12,500 dilution in lysis buffer.
Protein levels were normalized by BCA protein
assay (Pierce Biotechnology). A species were
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separately quantified in detergent-soluble and
-insoluble (5 m guanidine-HCl-extracted) frac-
tions using AB,_,, 4, ELISA kits (Invitrogen)
and (N) 82E1 AB oligomers (IBL Laboratories)
in accordance with the manufacturer’s in-
structions, except that standards included
guanidine-HCl in some cases. For tau analy-
sis, pellets were re-homogenized in a 10%
salt-sucrose solution to obtain various solu-
ble and insoluble fractions for WB (Green-
berg and Davies, 1990). Crude pellet tau was
obtained by re-homogenization of pellets
with Tris-buffered saline, pH 7.4, followed
by gentle centrifugation at 1000 X gfor 5 min
at 4°C. Protein levels of homogenate samples
were determined by BCA protein assay be-
fore electrophoresis. Aliquots of protein
were electrophoretically separated using
10% Bis-Tris gels. Electrophoresed proteins
were then transferred to nitrocellulose mem-
branes, blocked in Tris-buffered saline (TBS)
containing 5% (w/v) non-fat dry milk, and
subsequently hybridized with various primary
antibodies. Membranes were then incubated
with the appropriate HRP-conjugated sec-
ondary antibody before development with
chemiluminescent substrates. Densitometric
analysis of blots was conducted using Image]J
software.

Neuronal stereology. Whole-number neuro-
nal estimates were done using the optical frac-
tionator method of stereological counting with
stereological software (Stereo Investigator;
MBF Bioscience). Para-median sagittal serial
sections spaced 50 wm apart were stained with
NeuN. Anatomical regions of interest [ROIs;
including the entire cerebral cortex, cingulate,
and retrospenial cortex, cornu ammonis 1
(CA1), CA2, CA3, dentate gyrus, hilus, and
granule cell layer; illustrated in Fig. 1] were de-
fined according to the Paxinos and Watson
(2005) rat brain atlas. A grid was placed ran-
domly over the ROI slated for counting. At
random positions within the grid, as deter-
mined by the software, cells were counted
within three-dimensional optical dissectors
(50 X 50 X 10 wm) with a 100X objective.
Within each dissector, 1 um guard zones at the
top and bottom of the section surface were ex-
cluded. Section thickness was measured regu-
larly and averaged 12 um for all sections
analyzed, allowing for uniform antibody pene-
tration. The average sum of the optical dissec-
tors used was 185 for the cingulate cortex (CC)
and 72 for the hippocampus (HC). Estimated
totals by number weighted section thickness
were obtained with StereoInvestigator yielding
a coefficient of error <0.10. Neuronal densities
were calculated by adjusting these totals by the
tissue volume of the ROI investigated.
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Figure 3.  TgF344-AD rats manifest progressive A3 deposition. 4, B, Photomicrographs are shown from TgF344-AD rat brain
sections with median values by image analysis for human A3 immunohistochemistry. Two brain areas (CCand HC) and three age
groups (6,16, or 26 months) are shown for antibody 4G8 (4) and ThioS stain (B). Arrows in Aindicate CAA. Photomicrographs taken
of cortex or HC from transgenic animals (4 sections per animal, n = 5) were subjected to quantitative image analysis for 4G8 (C) or
ThioS burden (D). Fold increases across age points are indicated for each brain region. Scale bars: 4, B, 100 w.m. E, Quantitative
image analysis of ThioS-stained TgF334-AD rat brain sections was performed to assess CAA. Bars represent the mean CAA score
== SEM of each cohort (4 sections per animal, aged 6 months, n = 5; 16 months, n = 5; 26 months, n = 5). F, Representative
MicroPET images are shown from 15-month-old WT and TgF344-AD rats using the amyloid radiotracer, 18F-FDDNP. Parametric
color-coded transverse images are shown of distribution volume ratios (DVRs), with brainstem as the reference region. Frontal
cortex (FC) is oriented toward the right and brainstem, toward the left. Colors run from blue (lowest DVR = 0.95) to red (highest
DVR = 1.2). Similar results were obtained from 2 to 3 additional rats. G, A brain section from a 15-month-old TgF344-AD rat
reacted with FDDNP shows abundant AB deposits in the dentate gyrus by fluorescence microscopy. Arrows indicate apparent
intraneuronal hilar FDDNP-reactive deposits, and scale bar denotes 50 m.

a blinded examiner, and code was not broken until analyses were

Statistical analyses. All data were normally distributed; therefore, in
instances of single mean comparisons, Levene’s test for equality of vari-
ances followed by ¢ test for independent samples was used. In instances of
multiple mean comparisons, ANOVA was used, followed by post hoc
comparison using Bonferroni’s method. Wherever possible, we used a
hierarchical analysis strategy, where overall multi-way ANOVAs were
run before one-way ANOVA followed by post hoc testing. Alpha levels
were set to 0.05, and all analyses were conducted using SPSS software,
release 15.0 (SPSS) or Statictica (Statsoft). All analyses were conducted by

completed.

Results

Generation and behavioral analysis of TgF344-AD rats

We generated transgenic (Tg) AD rats on a Fischer 344 back-
ground by coinjection with APP,,, and PSIAE9 (Fig. 2 A,B), each
independent autosomal dominant causes of familial early-onset
AD. TgF344-AD rats expressed 2.6-fold higher human holo- and
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Figure 4.  Progressive accumulation of intraneuronal Af3;_,, and detergent-soluble A3 oligomers in TgF344-AD rats. A-C,
Two-step-extracted brain homogenates from TgF344-AD rats were assayed for 5 m guanidine HCl-soluble (A) or detergent-soluble
(B) human AB;_ 4 0r AB1_4y- AB1_4/AB1_4 ratios within each fraction are shown in C. Bars represent means = SEM (aged 6
months, n = 5; 16 months, n = 7; 26 months, n = 8). D, Photomicrographs are shown from TgF344-AD rat brain sections reacted
with soluble fibrillar AB oligomer antibody OC, neuronal nuclei antibody (NeuN), and DAPI. Two brain areas (CCand HC) and three
age groups (6, 16, or 26 months) are shown, and the scale bar denotes 100 wm. E, Detergent-soluble (N') 82E1-oligomers were
detected by ELISA in TgF344-AD rats versus PSAPP mice (n = 3—11/rodents per group; ND, not detectable). F~H, Western blots
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12F4 or 11A50; F), 6E10 (G), and 4G8 (H) antibodies. /, An electron micrograph is shown from Tg-F344-AD rat HC depicting a
plaque surrounded by numerous dystrophic neurites (DN).
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tion associated with hippocampal or
cortical injury. This phenotype was op-
erationalized as increased numbers of
beam breaks and rears in an open field
behavioral assay. Specifically, ANOVA
revealed significant (p < 0.01 for beam
breaks; p < 0.001 for rears) genotype X
time effects that were confirmed by post
hoc analyses in 15-month-old TgF344-AD
rats (Fig. 2E). Hyperactivity was age-
dependent, because overall ANOVA did
not reveal significance (p > 0.05) in
younger 6-month-old TgF344-AD rats
for beam breaks (data not shown) or rear-
ing activity, although 6-month-old Tg rats
reared significantly more (p < 0.05) dur-
ing the first 5 min of open field testing
(Fig. 2F). Novel object recognition, a
hippocampus-dependent measure of
working memory in the rat (Wan et al.,
1999), was significantly (p < 0.001) and
almost completely impaired in older (24
months old) Tg animals (Fig. 2G).

We also assessed cognitive perfor-
mance in the Barnes maze, a widely ac-
cepted test of hippocampus-dependent
spatial reference learning and memory in
rats (Barnes, 1979; Barnes et al., 1994).
While 6-month-old WT and TgF344-AD
rats learned the initial location of the es-
cape box equally well (Fig. 2H), 15-
month-old Tg animals made significantly
(p < 0.01) more errors during the learn-
ing phase by overall ANOVA and by post
hoc testing (*p < 0.05; Fig. 2I). In the
memory probe trial, this older cohort of
Tgrats performed significantly (p < 0.01)
worse than WT animals by overall
ANOVA and by post hoc analyses, indicating
impaired spatial reference memory (*p <
0.05; Fig. 21). Further evidence of impair-
ment came from the reversal phase of the
task, where the escape box was randomly
rotated to another location. Specifically, 15-
month-old Tg rats made significantly (p <
0.01) more errors than WT littermates by
ANOVA and by post hocanalyses (*p < 0.05;
**p < 0.01; Fig. 2I). A similar pattern of
significant (p < 0.05) results was observed
in 24-month-old Tg rats (Fig. 21), and even
the 6-month-old Tg rats trended toward

secreted APP_ proteins than endogenous rat APP by N-terminal
APP antibody 22C11 and 6.2-fold increased human PSIAE9 pro-
tein abundance versus endogenous rat N-terminal PS1 frag-
ment using human-selective PS1 antibody NT1 (Fig. 2C,D).
We began by evaluating behavioral impairment in three co-
horts of WT and TgF344-AD rats at 6, 15, and 24 months of
age. Neurologic screening did not reveal between-genotype
differences with respect to righting response, eye blink, ear
twitch, limb withdrawal in response to tactile stimuli, orient-
ing response to olfactory and visual stimuli, startle response,
or visual and tactile placing (datanot shown). Yet, TgF344-AD
rats displayed hyperactivity, which may result from disinhibi-

significance during the reversal phase (Fig. 2 H). Thus, TgF344-AD
rats exhibit progressive, age-dependent abnormalities in open field
activity and spatial learning and memory.

Progressive A3 deposition in TgF344-AD rats

We next examined cerebral B-amyloid pathology and A abun-
dance in cohorts of Tg animals at various ages (6, 15-17, and
25-27 months old) by multiple independent strategies (see Ma-
terials and Methods). Quantitative histological analysis of Tg rats
using AP antibody (4G8) and ThioS$ disclosed significant (p <
0.001) age-dependent B-amyloid deposition (~10-82 fold in-
creased vs 6-month-old animals) in the CC and HC of Tg rats
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(Fig. 3A-D), brain areas classically associ- A
ated with AD-type pathology in humans
(Selkoe, 2001). A similar pattern of results
was also observed in the striatum and cer-
ebellum (data not shown), additional
brain regions that commonly succumb to
amyloid plaques in AD and Down’s syn-
drome (Braak et al., 1989; Joachim et al.,
1989; Braak and Braak, 1990; Dickson et
al., 1990). Deposition of AB in cerebral
vessels, a pathological feature known as
cerebral amyloid angiopathy (CAA), oc-
curs in 86% of AD patients (Ellis et al,,
1996). CAA analyses were conducted as
previously described (Wyss-Coray et al.,
1997; Wyss-Coray et al., 2001), and re-
vealed copious (Fig. 34, see arrows) and
significant (*p < 0.05; **p < 0.01) age- 5
dependent pathology in Tg rat CC and
HC (Fig. 3E), while WT littermates were
devoid of both brain parenchymal .
B-amyloid and CAA at any age (data not b v

B AD Patient
MC1

.Q ;

Tg2576 Mouse

shown). CAA-like pathology also progres- g o
sively accumulated in the striatum and cer- Sl e
ebellum of Tg rats (mean CAA score = SEM ?

of Tg rats at 6 vs 16 vs 26 months-old: stria-
tum, 0.05 + 0.05 vs 0.88 = 0.07 vs 147 = F
0.16; cerebellum, 0.05 *.0.05vs 1.93 * 0.55
vs 3.18 * 0.43). To determine whether
B-amyloid deposits could be detected in
TgF344-AD rats by molecular imaging, we
injected them with the radiotracer [18F]
2-(1-(6-[(2-[F-18]fluoroethyl) (methyl)
amino]-2-naphthyl)ethylidene) malononi-
trile propene (18F-FDDNP) (Agdeppa et
al.,, 2001; Small et al., 2006) for dynamic Mi-
croPositron Emission Tomography (Mi-
croPET). As early as 15 months of age,
TgF344-AD rats showed higher 18F-
FDDNP distribution volume ratios (DVRs)
in the frontal cortex (FC) region versus WT

pTau-PADRE + peptide

Cohen et al. ® A Transgenic Alzheimer Rat

e JSMIgEMEAD

Lo & Crude pellet pTau-PADRE
= o £ o £ o
2 - =2 - =
—_—

75 kD-

= -
s00- M i o e 0 N

ACtin- s -l — -
6 16 26

Age of animals (months)

TgF344-AD Rat Crude pellet pTau-PADRE

9 g 4 Owr ** 1 10-fold
i 3 W TgF344-AD
N 2 3
¥ o 5 2
2] @ g
[ = ) 5
"v' S e (‘«3 g 0
PSAPP Mouse 8 6 16 26
v % Age of animals (months)
2 : E Sarkosyl insoluble pTau-PADRE
o £14 1 awr 2 77%
e 212 WTgF344-AD
; ’:a: 10
s ; e 8
- 3 6
§ 4
Bai sl v 2 2
QU Ey do
| AP 6 16 26
£ N Age of animals (months)
B 1148%
€ | . B e 0, O Triton soluble
2 ~,/(: e q A 'ﬁI:J12 137% O Sarkosyl soluble
S . | r 10 180% @ Sarkosyl insoluble
[a)] E. 8 il = M Crude pellet
< E 6
a
=
3 4
g 2
£ 0

26

16
Age of animals (months)

littermate rats (Fig. 3F). Fluorescence mi-
croscopy disclosed abundant extracellular
FDDNP * hippocampal deposits as well as
apparent intraneuronal signals (Fig. 3G).

TgF344-AD rat brains accumulate
intraneuronal Af3,_,, and soluble
AP oligomers

Figure 5.  TgF344-AD rats have tau hyperphosphorylation and neurofibrillary tangles. A, Photomicrographs are shown of
cingulate cortex from 16-month-old WT or TgF344-AD rats reacted with Gallyas silver stain (top) or phospho-tau antibody (P13
(bottom). Insets show representative dysmorphic neurons, and scale bars denote 25 p.m. B, Comparison of tau pathology among
AD patients, TgF344-AD rats, Tg2576, and PSAPP mice. Photomicrographs are shown from cingulate cortex stained with MC1
antibody, and scale bar denotes 10 wm. C—E, Three-step extracted brain homogenates from WT or TgF344-AD rats were assayed
for phospho-tau by WB. Western blots are shown using pTau-PADRE primary antibody (€) on brain homogenates from Tg versus
WT rats from 6 to 26 months of age in the crude pellet fraction. Densitometry results are shown for crude pellet (D) or Sarkosyl
insoluble (E; top) or pTau-PADRE-reactive tau ratios for each fraction (bottom) (normalized to total input tau). Bars represent the
mean ratios == SEM for each WT or Tg cohort (aged 6 —26 months, n = 5; 16 months, n = 7; 26 months, n = 8). F, The pTau-PADRE

To further investigate the possibility of in-
traneuronal A3, we immunostained brain
sections with C-terminal A isoform-specific antibodies. While
AB,_,, was not detected in neuronal somata, TgF344-AD rats
exhibited intraneuronal AB,_,, by confocal microscopy at 16
months of age (data not shown). Staining with A1l antibody,
which has been reported to recognize A oligomers (Neculaetal.,
2007; Yoshiike et al., 2008), revealed hippocampal pyramidal
neurons that were double-positive for FDDNP (data not shown),
supporting the existence of intraneuronal Af in Tg rat brains.
Furthermore, biochemical analysis of brain homogenates from
TgF344-AD rats confirmed age-dependent AB accumulation.
Separate sandwich ELISAs for AB,_,, and AfB,_,, in both
detergent-insoluble and -soluble brain extracts (Johnson-Wood

antibody was incubated with or without excess blocking peptide and reacted with AD patient cortex.

etal.,, 1997; Tan etal., 2002; Town et al., 2008) revealed significant
(p < 0.001) progressive increases for both fractions of AB,_,,
and AB,_,, in Tg rats (Fig. 4A,B). Notably, Tg rats had striking
overabundance of soluble A3, _, as early as 6 months of age (Fig.
4 B), before appreciable B-amyloid plaque formation (Tg rats at
this age only have 0—3 plaques per brain section). Intriguingly,
ratios of the more pathogenic detergent-soluble AB,_,, (Walsh et
al., 2000; Selkoe, 2001; Walsh et al., 2002a, b) to AB,_,, progres-
sively increased in TgF344-AD rat brains, while a similar ratio
considering detergent-insoluble A species revealed a corre-
sponding decrease with age (Fig. 4C). These findings raise the
intriguing possibility that neurotoxic Af,_,, oligomers
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Figure 6.  Additional evidence of neurofibrillary tangles and tau hyperphosphorylationin TgF344-AD rats. A, B, Widespread cortical tau pathol-

ogyispresentin 16-month-old TgF344-ADratbrains. Panels show representative brain sections from cingulate cortices of WTand Tgrats reacted with
awell-validated panel of pathologic tau antibodies. Insets show higher magnification phospho-tau positive neurons, and scale bars denote 50 rum.
C, D, Three-step extracted brain homogenates from WT or TgF344-AD rats were assayed for phospho-tau by WB. WBs are shown for brain (left)
Sarkosyl-insoluble (€) or crude pellet tau (D) probed with CP13 and actin antibodies. Densitometric analyses (relative to total tau) are shown to the
right. £, F, Three-step extracted brain homogenates from WT or TgF344-AD rats were assayed for CP13 (E) or PHF1 (F) phospho-tau by WB, and

summary analyses are shown.

(Walsh et al., 2002a; Shankar et al., 2008), which reside in the
detergent-soluble brain homogenate fraction, are preferen-
tially increasing over time relative to insoluble A peptides in

Tg animals.

To further examine this possibility, we performed immuno-
histochemical analysis using OC, a conformational antibody that
recognizes soluble oligomeric fibrillar AB (Kayed et al., 2003;
Kayed and Glabe, 2006). Consistent with this hypothesis,
TgF344-AD rat brains showed age-dependent accumulation of
OC immunoreactivity in both the CC and the HC (Fig. 4D).
Quantification of soluble (N) 82E1-oligomers by ELISA revealed

strikingly greater abundance of

rats versus PSAPP mice (both Tg rodents were generated using
the same constructs) that was statistically significant (**p < 0.01;
***p < 0.001; Fig. 4E). As independent validation, WB with both
A C-terminal and N-terminal-specific antibodies revealed pres-
ence of putative soluble oligomeric AB (likely a ~22 kDa pen-
tamer) in Tg rat brain homogenates (Fig. 4F). Antibody 6E10
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revealed monomeric AB, a putative Af3
oligomer, APP, and an ~18 kDa band that
was likely the B-C-terminal fragment of
APP (B-CTF, which contains the A do-
main), all of which were increased in Tg
versus WT rat brains (Fig. 4G). The
B-CTF identity of this ~18 kDa band was
confirmed by WB with AB middle region-
specific 4G8 antibody (Fig. 4 H). Finally,
EM analysis of B-amyloid plaques re-
vealed fibrillar ultrastructure and numer-
ous dystrophic neurites in close proximity
to plaques (Fig. 41).

Tauopathy in TgF344-AD rats
APP and PSI mutations increase brain A3
abundance but do not precipitate frank
neurofibrillary tangles (NFTs) in Tg
mouse models of cerebral amyloidosis
(Games et al., 1995; Duff et al., 1996;
Hsiao et al., 1996; Sturchler-Pierrat et al.,
1997; Holcomb et al., 1998; Mucke et al.,
2000; Jankowsky et al., 2001). Some of the
Tg AD mouse models do manifest hyper-
phosphorylated tau (Sturchler-Pierrat et
al., 1997; Tan etal., 1999), which may rep-
resent “pretangles” that do not progress to
NFTs. We probed for tau pathology in Tg
rats by silver-impregnating brain sections
using the Gallyas method (Lamy et al,
1989; Rosenwald et al., 1993). Strikingly,
numerous structures were detected in
close proximity to B-amyloid plaques in
aged Tg rats that were reminiscent of
NFTs found in AD patient brains (Fig.
5A). In addition, CP13 immunostaining
revealed teardrop-shaped structures mor-
phologically consistent with NFTs in 16-
month-old Tgrats (Fig. 5A). Importantly,
NFT-like structures were frequently ob-
served in nonplaqued areas of CC and
HC, much akin to human AD (Fig. 5B).
To further understand the nature of
tauopathy in Tg rats, brain homogenates
from TgF344-AD and WT rats were exten-

sively analyzed by tau biochemistry using previously described
methods (Greenberg and Davies, 1990). We began by raising our
own antibodies in rats against a peptide fragment of pathogenic

tau containing the pS396/404 epitope (designated pTau-PADRE,

these A species in TgF344-AD

see Materials and Methods). WB for total tau in rat brain homog-
enates using Tau-PADRE antibody revealed six bands ~48-62
kDa in size (data not shown), which likely contain six isoforms of
rat tau that are similar to those present in the human (Hanes et
al., 2009), and pTau-PADRE WB revealed increased immunore-
activity in aged TgF344-AD versus WT rats (Fig. 5C). Quantita-
tive analyses disclosed elevated abundance of insoluble (crude
pellet-extracted) tau in aged TgF344-AD rats, and abnormal rat
tau precipitation from Sarkosyl soluble-to-insoluble fractions in
6 and, more strikingly, 16-month-old Tg versus WT rat brains
("p < 0.10, *p < 0.05, **p < 0.01; Fig. 5D,E). To ensure that the
pTau-PADRE antibody was specific for human pTau, a peptide
neutralization experiment was performed using sections from
AD patient cortex. As shown in Figure 5F, a tenfold molar excess
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of blocking peptide completely abolished
NET labeling. To further confirm tauopa- .
thy in TgF344-AD rats, a panel of well- 3 S o O
validated pathogenic tau antibodies was e ;
used, and revealed a similar pattern of re-
sults (Fig. 6A—F). It is noteworthy that
initial tau changes at 6 months of age pre- T
cede frank B-amyloid plaque formation, =
and may therefore represent an early re- ©
sponse to abnormally high concentrations

of cerebral soluble A species.
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Immunohistochemistry for activated C
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burden in the CC and HC of TgF344-AD
rats versus age-matched WT littermates
(Fig. 7A-D). Interestingly, reactive micro- ~ E
glia and astrocytes were elevated as early
as 6 months of age in Tg versus WT rats,
before appreciable AB deposition but
concurrent with elevated soluble and oli-
gomeric A species. Furthermore, micro-
glia from aged Tg rats were hyperplasic
and hypertrophied (Fig. 7A,C) in close vi-
cinity of B-amyloid plaques (Fig. 7E) and
often contained ThioS™ deposits near
ThioS-decorated neurons (Fig. 7F). We
reasoned that, if microglia were actually
phagocytizing ThioS * neurons, then the
microglia should also show evidence of
engulfment of a bona fide neuronal
marker. Indeed, IHC revealed neuronal
nuclei (NeuN) deposits within the cyto-
plasm of Ibal * cells (Fig. 7G). If microglia
were in fact clearing neuronal debris, then
we may also expect neuronal loss in
TgF344-AD rats.
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TgF344-AD rats have neuroinflammation and microglial uptake of neuronal debris. A-D, Photomicrographs are
shown from TgF344-AD rat brain sections with median values by image analysis for gliosis IHC. Two brain regions (CC or HC) and
three age groups (6, 16, or 26 months) are shown for IbaT antibody (4) or GFAP antibody (B) staining. Photomicrographs taken of
CCor HC from WT or TgF344-AD rats (4 sections per animal, n = 5) were subjected to quantitative image analysis for IbaT (C) or

GFAP burden (D). Percentage increases within ages are indicated for each brain region. Scale bars: 4, B, 100 p.m. E, Photomicro-

TgF344-AD rats exhibit frank neuronal

loss and neurodegeneration

The above results raised the possibility
that neurons harboring pathogenic tau
may be rendered susceptible to death.
Two independent strategies were adopted to assess putative neu-
ronal loss in Tg animals. Following IHC analysis with NeuN an-
tibody, we (1) conducted exhaustive manual subfield counting
and (2) performed stereological whole number estimates of neu-
rons in the cerebral cortex and HC. Strikingly, there was statisti-
cally significant (***p < 0.005) cortical and hippocampal
neuronal loss in Tg rats that was both progressive and frank
(ranging from 23 to 45%; Fig. 8 A—C). Progressive neuronal loss
was also observed in specific subfields of the HC. At 6 months of
age, cell counts (NeuN ™ cells/mm?) were similar between WT
and Tg rats in the granule cell layer of the dentate gyrus (mean =
SD; WT: 18,810 * 1143, Tg: 19,031 * 2192), the hilus of the

graphs are shown of TgF344-AD rat brain sections stained with ThioS, NeuN antibody, and Iba1 antibody. Two brain regions (CCor
HC) and three age groups (6, 16, or 26 months) are shown, and the scale bar denotes 50 um. F, G, Photomicrographs of cortex from
26-month-old TgF344-AD rats stained with ThioS, NeuN antibody, and Ibal antibody are depicted. Insets show amyloid-
containing (F) or neuronal nuclei (NeuN; G) containing microglia, and scale bars denote 10 um.

dentate gyrus (WT: 900 *= 135, Tg: 947 * 184), and the
CA2+CA3 regions of the HC (WT: 3025 * 212, Tg: 3116 * 363).
However, at 16 and 26 months of age, there were 33 and 37%
decreases, respectively, of NeuN * cells in the dentate gyrus (16
months; WT: 18,235 * 2310, Tg: 12,178 = 1220; 26 months; WT:
17,175 = 2283, Tg: 10,750 * 1976), 63 and 66% decreases in the
hilus (16 months; WT: 820 = 67, Tg: 305 = 73; 26 months; WT:
794 * 109, Tg: 267 = 62), and 36 and 45% decreases in
CA2+CA3 (16 months; WT: 2790 * 284, Tg: 1778 = 310; 26
months; WT: 2740 = 421, Tg: 1490 = 350).

Western blots of rat brain homogenates showed age-
dependent decreases in NeuN abundance, supporting evidence
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Figure 8. Neuronal loss and degeneration in TgF344-AD rats. A, Photomicrographs are shown of 16 or 26-month-old

TgF344-AD rat brain sections stained with neuronal nuclei antibody (NeuN, greyscale signal) and ThioS (green signal). Three brain
areas (CC; dentate gyrus, DG; CAT) are shown, and the scale bar denotes 100 .em. B, WT or Tq rat brain sections (4 per animal, n =
5 for each genotype) were reacted with NeuN antibody and subjected to exhaustive manual cell counting for CC (left) or HC brain
regions (right). , Stereological whole number estimates of NeuN * neurons in WT or TgF344-AD rat (n = 5 for each genotype)
brain sections are shown for CC (left) or HC/CA1 regions (right). B, , Percentage decreases for Tg versus WT rats within age groups
are indicated for each brain region. D, WBs are shown for brain-specific NeuN and corresponding densitometry results (normalized
to input actin) are shown to the right. Bars represent mean ratios = SEM for each WT or Tg cohort (aged 6 —26 months; n = 4
rats/group). E, Photomicrographs of H&E-stained brain sections from 27-month-old WT and Tg rats are shown. Two brain areas (CC
and HC) are depicted. Arrows indicate cerebral vacuoles, and the scale bar denotes 100 L.m. F, Semi-quantitative image analysis of
H&E-stained rat brain sections was performed to assess vacuolization. Bars represent mean scores = SEM of each cohort (3 sections
per animal, n = 8 rats/group; CC and HC from 16 and 26-month-old WT and Tg animals were combined; ND, not detected). G,
Pearson product-moment correlation analyses were conducted to examine association between hippocampal (CA1) neuronal loss
and various A3 species.

of neuronal loss (Tp < 0.10, p < 0.05; ***p < 0.005; Fig. 8 D). The
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gest significance was detected when in-
versely correlating triton-soluble AB,_,,
or (N) 82E1-oligomers with NeuN * cells
in both the cerebral cortex (data not
shown) and HC of transgenic rats (Fig.
8G). Moreover, Pearson product-moment
correlation analyses also revealed statisti-
cally significant (p < 0.05) inverse corre-
lations between numbers of NeuN ™
neurons present in the CC and HC and
either 4G8 (CC: r = —0.677; HC: r =
—0.874) or ThioS burden (CC: r =
—0.593; HC: r = —0.739) in these brain
regions (data not shown).

There were additional indices of
neuronal degeneration and death in
TgF344-AD rats. For example, quantita-
tive microscopy for nicked DNA by
TUNEL assay (Fig. 9A4,B) and apoptosis by
total and cleaved (active) caspase-3 (Fig.
9C,D) prompted the conclusion that neu-
rons were significantly (7, a trend of p <
0.10; *p < 0.05; ***p < 0.005) dying via
apoptosis in older Tg rats. In addition, we
observed Hirano bodies at both light mi-
croscopic and ultrastructural levels in the
cortex and HC (Fig. 9E,F). Immunohis-
tochemical analyses of cleaved (active)
caspase-3 in the dentate gyrus revealed
pyknotic nuclei, further evidencing age-
dependent neuronal apoptosis in Tg ver-
sus WT rats (data not shown). Finally,
numerous dystrophic neurites were
observed by EM (Fig. 9E). Each of these
indicators of neurodegeneration was age-
dependent, and tracked with progressive
tauopathy and cognitive impairment in
Tg animals.

Discussion

Together, our data demonstrate that
TgF344-AD rats manifest a complete rep-
ertoire of AD pathological features.
Therefore, expression of only two mu-
tant human transgenes, each indepen-
dent causative factors for early-onset
familial AD, is sufficient to precipitate
the full array of AD pathological fea-
tures in the rat. We interpret these re-
sults as rodent model evidence in
support of the over two-decades-old am-
yloid cascade hypothesis of AD (Roze-
muller et al., 1989; Hardy and Allsop,
1991). Specifically, TgF344-AD rats de-
velop age-dependent accumulation of ce-

appearance of vacuolar pathology in older Tg rats further bol-
stered these conclusions (Fig. 8 E,F). To determine whether a
relationship existed between cerebral Af species and neuronal
loss in TgF344-AD rats, Pearson product-moment correlation
analyses were conducted and revealed statistically significant
(***p < 0.001) inverse correlations between AB3;_,, and (N) 82E1
AP oligomers with numbers of NeuN ™ neurons present in the
CC and HC (***p < 0.005; Fig. 8G). Strikingly, however, stron-

rebral AB that preempts tauopathy, cognitive disturbance,
apoptosis, and neuronal loss. While AB-driven rodent models of
AD also exhibit brain amyloidosis (Games et al., 1995; Hsiao et
al., 1996; Holcomb et al., 1998; Oddo et al., 2003; Oakley et al.,
2006; Lawlor et al., 2007; Liu et al., 2008; Leon et al., 2010),
cerebral AB abundance in TgF344-AD rats (~60 ug/wet g of
brain in aged animals) is high enough to be within the clinico-
pathological range of the human syndrome [~50-1000 ug/wet g
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ofbrain (Lueetal., 1999; Delacourteetal,, A
2002; Ingelsson et al., 2004; Steinerman et
al., 2008)]. Notably, abundance of soluble
oligomeric A species is markedly greater
in TgF344-AD rats compared with PSAPP
mice harboring the same mutant human
transgenes under mouse prion protein
regulatory control. Furthermore, while
frank NFT pathology has been found in
rodent models of AD, these models rely
on the presence of mutated human tau
(Oddo et al., 2003; Filipcik et al., 2012),
which is not causative of AD in humans. It
is noteworthy that TgF344-AD rats man-
ifest NFT pathology independent of hu-
man tau mutations, relying solely on
endogenous rat tau protein. This impor-
tant aspect of the model will allow for
more physiologic investigation into AS-
mediated tauopathy. Finally, neuronal
loss in other rodent models of AD is either
absent entirely or quantitatively minor, or
only present in a limited subset of brain
areas classically affected in human AD
(Calhoun et al., 1998; Oddo et al., 2003;
Oakley et al., 2006; Rebeck et al., 2010). By
contrast, TgF344-AD rats show consistent
and extensive neuronal loss in cortical and
hippocampal regions to the degree that we
even observe an age-dependent trend to-
ward decreased hemispheric brain weight
(data not shown) accompanied by spongi-
form-like vacuolar pathology.

But why do TgF344-AD rats present
with the full array of AD pathology while
mice expressing the same mutant human
transgenes do not? The answer to this
question is likely twofold (1) the magni-
tude and nature of cerebral amyloidosis in
Tg rats and (2) a rat tau proteome that is
more akin to humans than to mice. Spe-
cifically, TgF344-AD rats have progres-
sively elevated abundance of AB,_ 4o AB,_
42, and particularly of soluble oligomeric
AP species that are directly neurotoxic in
rats (Shankar et al., 2008). Furthermore,
rats have the full complement of six tau
isoforms present in humans, whereas
mice only harbor three of the human tau
isoforms (McMillan et al., 2008; Hanes et
al., 2009). These two key factors seem to
create a cerebral milieu that allows for the
development of AB-directed tauopathy and accompanying neu-
ronal loss. However, given the complexities inherent to compar-
ative biology across multiple species, further study is needed to
definitively answer this important question.

Several studies have established oligomeric A as the principle
neurotoxic species (Walsh et al., 2002a; Shankar et al., 2008), and
TgF344-AD rats exhibit intraneuronal A3 and high abundance of
soluble A oligomers. Strikingly, soluble oligomeric AS species
were most strongly associated with neuronal loss in Tg rats, sup-
porting this notion. It is also worth noting that we observe
tauopathy and apoptotic cells not only in close vicinity to amyloid
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adjacent TUNEL ™ cells were manually counted from CC (left) or HC (right). Bars represent the mean = SEM of each transgenic
cohort (n = 5 rats/group). €, Photomicrographs of TgF344-AD rat brain sections stained with total caspase-3 antibody and ThioS
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plaques, but also in brain areas devoid of amyloid deposits, but
where putative soluble oligomeric species are likely present. That
TgF344-AD rats show clear evidence of age-dependent neuronal
loss is interesting given the ongoing debate surrounding mecha-
nisms of neuronal loss in AD (Cotman and Anderson, 1995; Behl,
2000; Zhu et al., 2006; Gorman, 2008). Importantly, there have
been reports in postmortem brain samples suggesting that apo-
ptotic mechanisms may contribute to the disease. For example,
Stadelmann et al. (1998) reported DNA fragmentation in AD
patient brains, and observed a small population of neurons that
displayed morphological characteristics of apoptosis. Apoptosis
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is a dynamic and short-lived process, and it is likely that endog-
enous brain clearance machinery actively removes dead cells and
consequently reduces the detection threshold, making for a
more conservative result. While TgF344-AD rats evidence
neuronal apoptosis, it is distinctly possible that apoptosis is
not the sole mechanism for neuronal loss in these animals or in
human AD.

Similar to the findings of Su et al. (2001) in human AD pa-
tients, colocalization of pathologic tau (as indicated by CP13 or
PHF1 positivity) with TUNEL " cells in close proximity to amy-
loid plaques suggests temporal and spatial proximity of tauopa-
thy and neuronal death. These observations fall in line with
recent data suggesting a link among caspase-3 activation, tauopa-
thy, and neuronal apoptosis (Ittner et al., 2010; de Calignon et al.,
2010). Such findings raise the possibility that neuronal death may
be consequent upon tau pathology driven by overly abundant
cerebral Ap. It is also interesting that increased phosphorylation
of tau occurs as early as 6 months of age in Tg rats, when soluble
A is elevated, but before appreciable AB deposition. When
taken together with histologic and behavioral observations, these
results suggest that early elevation in soluble A species promotes
abnormal tau phosphorylation, and then continued bombard-
ment with multiple forms of AB further perpetrates tauopathy
and neuronal loss, culminating in cognitive impairment.

In conclusion, TgF344-AD rats manifest age-dependent cere-
bral amyloidosis, tauopathy, gliosis, apoptotic loss of neurons,
and cognitive disturbance. Cerebral amyloidosis seems to be the
driving force for tauopathy, neuronal loss, and interruption of
learning and memory in this model, supporting the 20-year-old
amyloid cascade hypothesis. Given that TgF344-AD rats capture
the full array of AD pathology, this new model represents a crit-
ical tool for the neuroscience community to enable future studies
in basic and translational AD research.
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